Kernel-Based Anomaly Detection in Hyperspectral Imagery

نویسندگان

  • Heesung Kwon
  • Nasser M. Nasrabadi
چکیده

In this paper we present a nonlinear version of the wellknown anomaly detection method referred to as the RXalgorithm. Extending this algorithm to a feature space associated with the original input space via a certain nonlinear mapping function can provide a nonlinear version of the RX-algorithm. This nonlinear RX-algorithm, referred to as the kernel RX-algorithm, is basically intractable mainly due to the high dimensionality of the feature space produced by the non-linear mapping function. However, in this paper it is shown that the kernel RX-algorithm can easily be implemented by kernelizing it in terms of kernels which implicitly compute dot products in the feature space. Improved performance of the kernel RX-algorithm over the conventional RX-algorithm is shown by testing several hyperspectral imagery for military target and mine detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

A Performance Characterization of Kernel-based Algorithms for Anomaly Detection in Hyperspectral Imagery

Title of thesis: A PERFORMANCE CHARACTERIZATION OF KERNEL-BASED ALGORITHMS FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGERY Hirsh Goldberg Master of Science, 2007 Thesis directed by: Professor Rama Chellappa Department of Electrical Engineering This thesis provides a performance comparison of linear and nonlinear subspacebased anomaly detection algorithms. Using a dual-window technique to separat...

متن کامل

Curvelet-Based Image Fusion Algorithm for Effective Anomaly Detection in Hyperspectral Imagery

Anomaly detection is one of the most important applications for hyperspectral imagery. However, some technical difficulties haven’t been effectively solved so far, such as high data dimensionality and high-order correlation between spectral bands. In this paper, a new curvelet-based image fusion algorithm is proposed for effective anomaly detection in hyperspectral imagery. In the proposed algo...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Rare signal component extraction based on kernel methods for anomaly detection in hyperspectral imagery

Anomaly detection is one of hot research topics in hyperspectral remote sensing. For this task, RX detector (RXD) is a benchmark method. Unfortunately, Gaussian distribution assumption adopted by RXD cannot be well satisfied in hyperspectral images due to high dimensionality of data and complicated correlation between spectral bands. In this paper, we address this problem and propose an algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005